
Pixels 3

 1 Pixels
 “ A journey of a thousand miles begins with a single step. ”
 —Lao-tzu

 In this chapter:
– Specifying pixel coordinates.
 – Basic shapes: point, line, rectangle, ellipse.
 – Color: grayscale, “ RGB. ”
– Color transparency.

 Note that we are not doing any programming yet in this chapter! We are just dipping our feet in the water and
getting comfortable with the idea of creating onscreen graphics with text-based commands, that is, “ code ” !

 1.1 Graph Paper
 ! is book will teach you how to program in the context of computational media, and it will use the
development environment Processing (http://www.processing.org) as the basis for all discussion and
examples. But before any of this becomes relevant or interesting, we must fi rst channel our eighth grade
selves, pull out a piece of graph paper, and draw a line. ! e shortest distance between two points is a good
old fashioned line, and this is where we begin, with two points on that graph paper.

 c0001 c0001

 p0010 p0010

 p0020 p0020

 p0070 p0070

 s0010 s0010

 p0080 p0080

0

0
1
2
3
4
5

Point B (4,5)

Point A
(1,0)

x-axis

y-axis
1 2 3 4

 fi g. 1.1 f0010 f0010

 Figure 1.1 shows a line between point A (1,0) and point B (4,5). If you wanted to direct a friend of yours
to draw that same line, you would give them a shout and say “ draw a line from the point one-zero to
the point four-fi ve, please. ” Well, for the moment, imagine your friend was a computer and you wanted
to instruct this digital pal to display that same line on its screen. ! e same command applies (only this
time you can skip the pleasantries and you will be required to employ a precise formatting). Here, the
instruction will look like this:

 line(1,0,4,5);

 Congratulations, you have written your fi rst line of computer code! We will get to the precise formatting
of the above later, but for now, even without knowing too much, it should make a fair amount of sense.
We are providing a command (which we will refer to as a “ function ”) for the machine to follow entitled
 “ line. ” In addition, we are specifying some arguments for how that line should be drawn, from point

 p0090 p0090

 u0050 u0050

 p0110 p0110

CH001.indd 3CH001.indd 3 7/14/2008 6:44:08 PM7/14/2008 6:44:08 PM

4 Learning Processing

A (0,1) to point B (4,5). If you think of that line of code as a sentence, the function is a verb and the
 arguments are the objects of the sentence. ! e code sentence also ends with a semicolon instead of a period.

Verb Object Object

Draw a line from 0,1 to 4,5

 fi g. 1.2 f0020 f0020

! !
!

"

"

!
(0,0)

(0,0)

y-axis y-axis

x-axis x-axis

Eighth grade Computer
 fi g. 1.3 f0030 f0030

 ! e key here is to realize that the computer screen is nothing more than a fancier piece of graph paper.
Each pixel of the screen is a coordinate—two numbers, an “ x ” (horizontal) and a “ y ” (vertical)—that
determine the location of a point in space. And it is our job to specify what shapes and colors should
appear at these pixel coordinates.

 Nevertheless, there is a catch here. ! e graph paper from eighth grade (“ Cartesian coordinate system ”)
placed (0,0) in the center with the y-axis pointing up and the x-axis pointing to the right (in the positive
direction, negative down and to the left). ! e coordinate system for pixels in a computer window,
however, is reversed along the y -axis. (0,0) can be found at the top left with the positive direction to the
right horizontally and down vertically. See Figure 1.3 .

 p0120 p0120

 p0130 p0130

 Exercise 1-1: Looking at how we wrote the instruction for line “ line(1,0,4,5); ” how would
you guess you would write an instruction to draw a rectangle? A circle? A triangle? Write
out the instructions in English and then translate it into “ code. ”

 p0140 p0140

 English: __ _
 Code: __ ___________
 English: __ ___________
 Code: __ ___________
 English: __ ___________
 Code: __ ___________

 Come back later and see how your guesses matched up with how Processing actually works.

 p0150 p0150

 p0160 p0160

 p0170 p0170

 p0180 p0180

 p0190 p0190

 p0200 p0200

 p0210 p0210

CH001.indd 4CH001.indd 4 7/14/2008 6:44:08 PM7/14/2008 6:44:08 PM

Pixels 5

 1.2 Simple Shapes
 ! e vast majority of the programming examples in this book will be visual in nature. You may ultimately
learn to develop interactive games, algorithmic art pieces, animated logo designs, and (insert your own
category here) with Processing , but at its core, each visual program will involve setting pixels. ! e simplest
way to get started in understanding how this works is to learn to draw primitive shapes. ! is is not unlike
how we learn to draw in elementary school, only here we do so with code instead of crayons.
 Let’s start with the four primitive shapes shown in Figure 1.4 .

 s0020 s0020

 p0220 p0220

 p0230 p0230

Point Line Rectangle Ellipse
 fi g. 1.4 f0040 f0040

0
0 1 2 3 4

x-axis

y-axis

5 6 7 8 9

1
2
3
4

Point (4,5);

x

5
6
7
8
9

y

 fi g. 1.5 f0050 f0050

 For each shape, we will ask ourselves what information is required to specify the location and size (and
later color) of that shape and learn how Processing expects to receive that information. In each of the
diagrams below (Figures 1.5 through 1.11), assume a window with a width of 10 pixels and height of
10 pixels. ! is isn’t particularly realistic since when we really start coding we will most likely work with
much larger windows (10 # 10 pixels is barely a few millimeters of screen space). Nevertheless for
demonstration purposes, it is nice to work with smaller numbers in order to present the pixels as they
might appear on graph paper (for now) to better illustrate the inner workings of each line of code.

 p0240 p0240

 A point is the easiest of the shapes and a good place to start. To draw a point, we only need an x and y
coordinate as shown in Figure 1.5 . A line isn’t terribly diffi cult either. A line requires two points, as shown
in Figure 1.6 .

 p0250 p0250

 fi g. 1.6 f0060 f0060

0
0 1 2 3 4

x-axis

y-axis

5 6 7 8 9

1
2
3
4

Point B (8,3)

line (1,3,8,3);

5
6
7
8
9

Point A (1,3)

yx
Point A

yx
Point B

CH001.indd 5CH001.indd 5 7/14/2008 6:44:09 PM7/14/2008 6:44:09 PM

6 Learning Processing

0
0 1 2 3 4

x-axis

y-axis

5 6 7 8 9

1
2
3
4

rectMode (CENTER);
rect (3,3,5,5);

5
6
7
8
9

center
(3,3)

center
x

center
y

width
height

 fi g. 1.8 f0080 f0080

0
0 1 2 3 4

x-axis

y-axis

5 6 7 8 9

1
2
3
4 rect (2,3,5,4);

top left
x

Top left

top left
y

width

width

height

height
5
6
7
8
9

 fi g. 1.7 f0070 f0070

 Finally, we can also draw a rectangle with two points (the top left corner and the bottom right corner).
! e mode here is “ CORNERS ” (see Figure 1.9) .

 p0270 p0270

Once we arrive at drawing a rectangle, things become a bit more complicated. In Processing , a rectangle is
specifi ed by the coordinate for the top left corner of the rectangle, as well as its width and height
(see Figure 1.7).

 However, a second way to draw a rectangle involves specifying the centerpoint, along with width
and height as shown in Figure 1.8 . If we prefer this method, we fi rst indicate that we want to use the
 “ CENTER ” mode before the instruction for the rectangle itself. Note that Processing is case-sensitive.
Incidentally, the default mode is “ CORNER, ” which is how we began as illustrated in Figure 1.7 .

 p0260 p0260

CH001.indd 6CH001.indd 6 7/14/2008 6:44:09 PM7/14/2008 6:44:09 PM

Pixels 7

 Once we have become comfortable with the concept of drawing a rectangle, an ellipse is a snap. In fact, it
is identical to rect() with the diff erence being that an ellipse is drawn where the bounding box 1 (as shown
in Figure 1.11) of the rectangle would be. ! e default mode for ellipse() is “ CENTER ” , rather than
 “ CORNER ” as with rect() . See Figure 1.10 .

 p0280 p0280

0
0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

bottom right (8,7)

rectMode (CORNERS)
rect (5,5,8,7);

top left (5,5)

top left
x

bottom right x

bottom right y
top left

y

fi g. 1.9 f0090 f0090

 1 A bounding box of a shape in computer graphics is the smallest rectangle that includes all the pixels of that shape. For example, the
bounding box of a circle is shown in Figure 1.11 .

0

0 1 2 3 4 5 6 7 8 9

1
2
3
4 ellipseMode (CENTER);

ellipse (3,3,5,5);5
6
7
8
9

ellipseMode (CORNER);
ellipse (3,3,4,4);

0

0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

ellipseMode (CORNERS);
ellipse (5,5,8,7);

0

0 1 2 3 4 5 6 7 8 9

1
2
3
4
5
6
7
8
9

 fi g. 1.10 f0110 f0110

 It is important to acknowledge that in Figure 1.10 , the ellipses do not look particularly circular. Processing
has a built-in methodology for selecting which pixels should be used to create a circular shape. Zoomed
in like this, we get a bunch of squares in a circle-like pattern, but zoomed out on a computer screen,
we get a nice round ellipse. Later, we will see that Processing gives us the power to develop our own

 p0290 p0290

CH001.indd 7CH001.indd 7 7/14/2008 6:44:10 PM7/14/2008 6:44:10 PM

8 Learning Processing

Triangle Arc Quad Curve
 fi g. 1.12 f0120 f0120

algorithms for coloring in individual pixels (in fact, we can already imagine how we might do this using
 “ point ” over and over again), but for now, we are content with allowing the “ ellipse ” statement to do the
hard work.

 Certainly, point, line, ellipse, and rectangle are not the only shapes available in the Processing library
of functions. In Chapter 2, we will see how the Processing reference provides us with a full list of
available drawing functions along with documentation of the required arguments, sample syntax, and
imagery. For now, as an exercise, you might try to imagine what arguments are required for some other
shapes (Figure 1.12):

 triangle()
 arc()
 quad()
 curve()

 p0300 p0300

 u0060 u0060
 u0070 u0070
 u0080 u0080
 u0090 u0090 p0350 p0350

0
0 1 2 3 4

x-axis

y-axis

5 6 7 8 9

1
2
3
4
5
6
7
8
9

 line(0,0,9,6);
 point(0,2);
 point(0,4);
 rectMode(CORNER);
 rect(5,0,4,3);

 ellipseMode(CENTER);

 ellipse(3,7,4,4);

 p0370 p0370
 p0380 p0380
 p0390 p0390
 p0400 p0400

 p0410 p0410

 p0420 p0420

 p0430 p0430 f0220 f0220

 Exercise 1-2: Using the blank graph below, draw the primitive shapes specifi ed by the code. p0360 p0360

Circle’s bounding box

 fi g. 1.11 f0100 f0100

CH001.indd 8CH001.indd 8 7/14/2008 6:44:10 PM7/14/2008 6:44:10 PM

Pixels 9

 Exercise 1-3: Reverse engineer a list of primitive shape drawing instructions for the diagram below. p0440 p0440

0
0 1 2 3 4

Note: There is more than one correct answer!

5 6 7 8 9

1
2
3
4
5
6
7
8
9

 __

 __

 __

 __

 __

 f0230 f0230

 p0450 p0450

 p0460 p0460

 p0470 p0470

 p0480 p0480

 p0490 p0490

 1.3 Grayscale Color
 As we learned in Section 1.2, the primary building block for placing shapes onscreen is a pixel
coordinate. You politely instructed the computer to draw a shape at a specifi c location with a specifi c size.
Nevertheless, a fundamental element was missing—color.

 In the digital world, precision is required. Saying “ Hey, can you make that circle bluish-green? ” will
not do. ! erefore, color is defi ned with a range of numbers. Let’s start with the simplest case: black and
white or grayscale . In grayscale terms, we have the following: 0 means black, 255 means white. In between,
every other number—50, 87, 162, 209, and so on—is a shade of gray ranging from black to white. See
 Figure 1.13 .

 s0030 s0030

 p0510 p0510

 p0520 p0520

0 50 87 162 209 255
 fi g. 1.13 f0130 f0130

 Does 0–255 seem arbitary to you?

 Color for a given shape needs to be stored in the computer’s memory. ! is memory is just a long
sequence of 0’s and 1’s (a whole bunch of on or off switches.) Each one of these switches is a

 b0010 b0010

 p0530 p0530

CH001.indd 9CH001.indd 9 7/14/2008 6:44:11 PM7/14/2008 6:44:11 PM

10 Learning Processing

 By adding the stroke() and fi ll() functions before the shape is drawn, we can set the color. It is much like
instructing your friend to use a specifi c pen to draw on the graph paper. You would have to tell your
friend before he or she starting drawing, not after.

 ! ere is also the function background() , which sets a background color for the window where shapes will
be rendered.

 Example 1-1: Stroke and fi ll

 background(255);
 stroke(0);
 fill(150);
 rect(50,50,75,100);

stroke() or fi ll() can be eliminated with the noStroke() or noFill() functions.
Our instinct might be to say “ stroke(0) ” for no outline, however, it is
important to remember that 0 is not “ nothing ” , but rather denotes the color
black. Also, remember not to eliminate both—with noStroke() and noFill() ,
nothing will appear!

 f0240 f0240 p0570 p0570

 p0580 p0580

 s0040 s0040

 p0590 p0590
 p0600 p0600
 p0610 p0610
 p0620 p0620

 p0630 p0630

 Understanding how this range works, we can now move to setting specifi c grayscale colors for the shapes
we drew in Section 1.2. In Processing , every shape has a stroke() or a fi ll() or both. ! e stroke() is the
outline of the shape, and the fi ll() is the interior of that shape. Lines and points can only have stroke() , for
obvious reasons.

 If we forget to specify a color,
Processing will use black (0) for the
stroke() and white (255) for the
fi ll() by default. Note that we are
now using more realistic numbers
for the pixel locations, assuming a
larger window of size 200 # 200
pixels. See Figure 1.14.

 rect(50,40,75,100);

 p0540 p0540

 p0550 p0550

 u0100 u0100
 fi g. 1.14 f0140 f0140

 fi g. 1.15 f0150 f0150

bit , eight of them together is a byte . Imagine if we had eight bits (one byte) in sequence—how
many ways can we confi gure these switches? ! e answer is (and doing a little research into binary
numbers will prove this point) 256 possibilities, or a range of numbers between 0 and 255. We will
use eight bit color for our grayscale range and 24 bit for full color (eight bits for each of the red,
green, and blue color components; see Section 1.4).

The outline of the rectangle is black

The interior of the rectangle is white

The background color is gray.

CH001.indd 10CH001.indd 10 7/14/2008 6:44:11 PM7/14/2008 6:44:11 PM

Pixels 11

background(150);
stroke(0);
line(0,0,100,100);
stroke(255);
noFill();
rect(25,25,50,50);

 fi g. 1.17 f0170 f0170

 Example 1-2: noFill ()

 background(255);
 stroke(0);
 noFill();
 ellipse(60,60,100,100);

 If we draw two shapes at one time, Processing will always use the
most recently specifi ed stroke() and fi ll() , reading the code from top to
bottom. See Figure 1.17 .

 s0050 s0050

 p0640 p0640
 p0650 p0650
 p0660 p0660
 p0670 p0670

 p0680 p0680

 fi g. 1.16 f0160 f0160

 Exercise 1-4: Try to guess what the instructions would be for the following screenshot. p0750 p0750

 __

 __

 __

 __

 __

 __

 __

 __

 p0760 p0760

 p0770 p0770

 p0780 p0780

 p0790 p0790

 p0800 p0800

 p0810 p0810

 p0810 p0810

 p0810 p0810

nofi ll() leaves the shape
with only an outline

CH001.indd 11CH001.indd 11 7/14/2008 6:44:12 PM7/14/2008 6:44:12 PM

12 Learning Processing

 1.4 RGB Color
 A nostalgic look back at graph paper helped us learn the fundamentals for pixel locations and size.
Now that it is time to study the basics of digital color, we search for another childhood memory to get
us started. Remember fi nger painting? By mixing three “ primary ” colors, any color could be generated.
Swirling all colors together resulted in a muddy brown. ! e more paint you added, the darker it got.

 Digital colors are also constructed by mixing three primary colors, but it works diff erently from paint.
First, the primaries are diff erent: red, green, and blue (i.e., “ RGB ” color). And with color on the screen,
you are mixing light, not paint, so the mixing rules are diff erent as well.

 • Red ! green $ yellow
 • Red ! blue $ purple
 • Green ! blue $ cyan (blue-green)
 • Red ! green ! blue $ white
 • No colors $ black

 ! is assumes that the colors are all as bright as possible, but of course, you have a range of color available, so
some red plus some green plus some blue equals gray, and a bit of red plus a bit of blue equals dark purple.

 While this may take some getting used to, the more you program and experiment with RGB color, the more
it will become instinctive, much like swirling colors with your fi ngers. And of course you can’t say “ Mix
some red with a bit of blue, ” you have to provide an exact amount. As with grayscale, the individual color
elements are expressed as ranges from 0 (none of that color) to 255 (as much as possible), and they are listed
in the order R, G, and B. You will get the hang of RGB color mixing through experimentation, but next we
will cover some code using some common colors.

 Note that this book will only show you black and white versions of each Processing sketch, but everything
is documented online in full color at http://learningprocessing.com with RGB color diagrams found
specifi cally at: http://learningprocessing.com/color .

 Example 1-3: RGB color

 background(255);
 noStroke();

 fill(255,0,0);
 ellipse(20,20,16,16);

 fill(127,0,0);
 ellipse(40,20,16,16);

 fill(255,200,200);
 ellipse(60,20,16,16);

Processing also has a color selector to aid in choosing colors. Access this via TOOLS (from the
menu bar) → COLOR SELECTOR. See Figure 1.19 .

 s0060 s0060

 p0820 p0820

 p0830 p0830

 u0110 u0110
 u0120 u0120
 u0130 u0130
 u0140 u0140
 u0150 u0150

 p0890 p0890

 p0900 p0900

 p0990 p0990

 s0070 s0070

 p0920 p0920
 p0930 p0930

 p0940 p0940
 f0250 f0250 p0950 p0950

 p0960 p0960
 p0970 p0970

 p0980 p0980
 p0990 p0990

 p1000 p1000

 fi g. 1.18 f0180 f0180

Bright red

Dark red

Pink (pale red).

CH001.indd 12CH001.indd 12 7/14/2008 6:44:13 PM7/14/2008 6:44:13 PM

Pixels 13

 fi g. 1.19 f0190 f0190

 fill(0,100,0); ______________________________________

 fill(100); ______________________________________

 stroke(0,0,200); ______________________________________

 stroke(225); ______________________________________

 stroke(255,255,0); ______________________________________

 stroke(0,255,255); ______________________________________

 stroke(200,50,50); ______________________________________

 u0160 u0160

 u0170 u0170

 u0180 u0180

 u0190 u0190

 u0200 u0200

 u0210 u0210

 u0220 u0220

 Exercise 1-6: What color will each of the following lines of code generate? p1080 p1080

 Exercise 1-5: Complete the following program. Guess what RGB values to use (you will be
able to check your results in Processing after reading the next chapter). You could also use the
color selector, shown in Figure 1.19 .

 p1010 p1010

 fill(________,________,________);

 ellipse(20,40,16,16);

 fill(________,________,________);

 ellipse(40,40,16,16);

 fill(________,________,________);

 ellipse(60,40,16,16);

 p1020 p1020
 p1030 p1030

 p1040 p1040
 p1050 p1050

 p1060 p1060

 p1070 p1070

Bright blue

Dark purple

Yellow

CH001.indd 13CH001.indd 13 7/14/2008 6:44:13 PM7/14/2008 6:44:13 PM

14 Learning Processing

 1.5 Color Transparency
 In addition to the red, green, and blue components of each color, there is an additional optional fourth
component, referred to as the color’s “ alpha. ” Alpha means transparency and is particularly useful when
you want to draw elements that appear partially see-through on top of one another. ! e alpha values for
an image are sometimes referred to collectively as the “ alpha channel ” of an image.
 It is important to realize that pixels are not literally transparent, this is simply a convenient illusion that
is accomplished by blending colors. Behind the scenes, Processing takes the color numbers and adds a
percentage of one to a percentage of another, creating the optical perception of blending. (If you are
interested in programming “ rose-colored ” glasses, this is where you would begin.)

 Alpha values also range from 0 to 255, with 0 being completely transparent (i.e., 0% opaque) and 255
completely opaque (i.e., 100% opaque). Example 1-4 shows a code example that is displayed in
 Figure 1.20 .

 Example 1-4: Alpha transparency

 background(0);
 noStroke();

 fill(0,0,255);
 rect(0,0,100,200);

 fill(255,0,0,255);
 rect(0,0,200,40);

 fill(255,0,0,191);
 rect(0,50,200,40);

 fill(255,0,0,127);
 rect(0,100,200,40);

 fill(255,0,0,63);
 rect(0,150,200,40);

 1.6 Custom Color Ranges
 RGB color with ranges of 0 to 255 is not the only way you can handle color in Processing . Behind
the scenes in the computer’s memory, color is always talked about as a series of 24 bits (or 32 in
the case of colors with an alpha). However, Processing will let us think about color any way we like,
and translate our values into numbers the computer understands. For example, you might prefer to
think of color as ranging from 0 to 100 (like a percentage). You can do this by specifying a custom
colorMode() .

 s0080 s0080

 p1160 p1160

 p1170 p1170

 p1180 p1180

 s0090 s0090

 p1190 p1190
 p1200 p1200

 p1210 p1210
 p1220 p1220

 p1230 p1230
 p1240 p1240

 p1250 p1250
 p1260 p1260

 p1270 p1270
 p1280 p1280

 p1290 p1290
 p1300 p1300

 s0100 s0100

 p1310 p1310

 fi g. 1.20 f0200 f0200

No fourth argument means 100% opacity.

255 means 100% opacity.

75% opacity

50% opacity

25% opacity

CH001.indd 14CH001.indd 14 7/14/2008 6:44:14 PM7/14/2008 6:44:14 PM

Pixels 15

 colorMode(RGB,100);

 ! e above function says: “ OK, we want to think about color in terms of red, green, and blue. ! e range of
RGB values will be from 0 to 100. ”

 Although it is rarely convenient to do so, you can also have diff erent ranges for each color component:
 colorMode(RGB,100,500,10,255);

 Now we are saying “ Red values go from 0 to 100, green from 0 to 500, blue from 0 to 10, and alpha from
0 to 255. ”

 Finally, while you will likely only need RGB color for all of your programming needs, you can also specify
colors in the HSB (hue, saturation, and brightness) mode. Without getting into too much detail, HSB
color works as follows:

 • Hue —The color type, ranges from 0 to 360 by default (think of 360° on a color “ wheel ”).
 • Saturation —The vibrancy of the color, 0 to 100 by default.
 • Brightness —The, well, brightness of the color, 0 to 100 by default.

 u0230 u0230

 p1330 p1330

 p1340 p1340

 u0240 u0240

 p1360 p1360

 p1370 p1370

 u0250 u0250
 u0260 u0260
 u0270 u0270

 __
 __
 __
 __
 __
 __
 __
 __
 __

 p1420 p1420

 p1450 p1450

 p1470 p1470

 p1480 p1480

 p1490 p1490

 p1500 p1500

 Exercise 1-7: Design a creature using simple shapes and colors. Draw the creature by hand
using only points, lines, rectangles, and ellipses. ! en attempt to write the code for the
creature, using the Processing commands covered in this chapter: point(), lines(), rect(),
ellipse(), stroke() , and fi ll() . In the next chapter, you will have a chance to test your results
by running your code in Processing.

 p1410 p1410

With colorMode() you can set your own color range.

CH001.indd 15CH001.indd 15 7/14/2008 6:44:14 PM7/14/2008 6:44:14 PM

16 Learning Processing

 Example 1-5 shows my version of Zoog, with the outputs shown in Figure 1.21 .

 Example 1-5: Zoog

 ellipseMode(CENTER);
 rectMode(CENTER);
 stroke(0);
 fi ll(150);
 rect(100,100,20,100);
 fi ll(255);
 ellipse(100,70,60,60);
 fi ll(0);
 ellipse(81,70,16,32);
 ellipse(119,70,16,32);
 stroke(0);
 line(90,150,80,160);
 line(110,150,120,160);

 ! e sample answer is my Processing -born being, named Zoog. Over the course of the fi rst nine chapters
of this book, we will follow the course of Zoog’s childhood. ! e fundamentals of programming will be
demonstrated as Zoog grows up. We will fi rst learn to display Zoog, then to make an interactive Zoog
and animated Zoog, and fi nally to duplicate Zoog in a world of many Zoogs.

 I suggest you design your own “ thing ” (note that there is no need to limit yourself to a humanoid or
creature-like form; any programmatic pattern will do) and recreate all of the examples throughout
the fi rst nine chapters with your own design. Most likely, this will require you to only change a small
portion (the shape rendering part) of each example. ! is process, however, should help solidify your
understanding of the basic elements required for computer programs—Variables, Conditionals, Loops,
Functions, Objects, and Arrays—and prepare you for when Zoog matures, leaves the nest, and ventures
off into the more advanced topics from Chapter 10 on in this book.

 p1520 p1520

 s0110 s0110

 p1530 p1530
 p1540 p1540
 p1550 p1550
 p1560 p1560
 p1570 p1570
 p1580 p1580
 p1590 p1590
 p1600 p1600
 p1610 p1610
 p1620 p1620
 p1630 p1630
 p1640 p1640
 p1650 p1650

 p1660 p1660

 p1670 p1670

 f0260 f0260 f0270 f0270 f0280 f0280 f0290 f0290 f0300 f0300 f0310 f0310 f0320 f0320 f0330 f0330 f0340 f0340 f0350 f0350

 fi g. 1.21

 f0210 f0210

CH001.indd 16CH001.indd 16 7/14/2008 6:44:14 PM7/14/2008 6:44:14 PM

